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Laminar Flow in Microchannels
With Noncircular Cross Section
Analytical solutions are presented for laminar fully developed flow in micro-/
minichannels of hyperelliptical and regular polygonal cross sections in the form of com-
pact relationships. The considered geometries cover a wide range of common simply
connected shapes including circle, ellipse, rectangle, rectangle-with-round-corners,
rhombus, star-shape, equilateral triangle, square, pentagon, and hexagon. A point match-
ing technique is used to calculate closed form solutions for the velocity distributions in
the above-mentioned channel cross sections. The developed relationships for the velocity
distribution and pressure drop are successfully compared with existing analytical solu-
tions and experimental data collected from various sources for a variety of geometries,
including polygonal, rectangular, circular, elliptical, and rhombic cross sections. The
present compact solutions provide a convenient and power tool for performing hydrody-
namic analyses in a variety of fundamental and engineering applications such as in
microfluidics, transport phenomena, and porous media. �DOI: 10.1115/1.4001973�
Introduction
The fast growth of microfluidic systems and their applications

n microelectronic cooling �1�, micro electro mechanical systems
MEMS� �2�, fuel cell technology �3�, microreactors �4�, and
edical and biomedical devices �5� has motivated many research-

rs to investigate microscale transport phenomena. Microchannels
ave specific characteristics such as high surface area per unit
olume and high heat transfer coefficient �2�. Moreover, micro-
hannels are essential components of many microfluidic devices
nd new compact thermal solutions �1�. In addition, porous mate-
ials can be modeled as networks of microscale conduits; thus,
ransport properties of porous structures are closely related to the
eometry of the considered microchannels �6,7�. Recently, micro-
hannels with different cross-sectional geometries were fabricated
or both commercial and scientific purposes. Therefore, investiga-
ion of fluid flow in channels with different cross sections is im-
ortant. Experimental studies conducted by Pfahler et al. �8,9�,
arley et al. �10�, Choi et al. �11�, Stanley �12�, and Gao et al.

13,14� confirmed that the continuum theory holds in micron size
hannels. Comprehensive reviews presented by Steinke and Kand-
ikar �15� and Papautsky et al. �16� have discussed this subject;
hus, existing solutions for large scale ducts are also applicable to

icrochannels.
Several analytical solutions for flow in noncircular channels are

vailable in literature. Dryden et al. �17� based on the analogy
etween fully developed velocity profile and stress function in
lasticity reported velocity distribution in rectangular channels.
urday’s model �18� presented a simple approximation for veloc-

ty distribution and Truskey et al. �19� employed separation of
ariable technique and developed exact velocity distribution in
ectangular ducts. Solutions of flow in equilateral and isosceles
riangular conduits are presented by Refs. �17,20�, respectively.
n isosceles trapezoid is an important shape since this cross sec-

ion is formed as a result of etching process in silicon wafers �21�.
hah �22�, employing a discrete least method, obtained solutions
or fully developed flow in a variety of geometries including trap-
zoidal, triangular with and without round corners, and rhombic
ross sections. Leveque solution for flow in an elliptical duct is
eported by Richardson �23�. Cheng �24� employed nine point
atching method to determine the velocity profile and Poiseuille
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number for m-sided regular polygonal ducts. Fully developed flow
in ducts with several irregular cross sections are also solved, see,
for example, Refs. �25–28�. The pertinent literature is reviewed
critically by Shah and London �29�. The important point regarding
the abovementioned solutions is that the forms of the final solu-
tions are different from each other and is limited to the designated
geometry.

The major drawback in using microsystems is their high pres-
sure drop, resulted from their small cross-sectional length scale
�30�. Bahrami et al. �31,32� developed a general model for pre-
dicting pressure drop in microchannels of arbitrary cross section.
Using the analytical solution for elliptical duct and the concept of
Saint-Venant principal in torsion, they showed that the Poiseuille
number, f Re, where f is the Fanning friction factor and Re is the
Reynolds number, is a function of the polar moment of inertia,
area, and perimeter of the cross section of the channel. Their
model showed good agreement with experimental and numerical
data for a wide variety of cross sections such as rectangular, trap-
ezoidal, triangular, circular, and moon shaped. However, they did
not provide the velocity distribution in the considered microchan-
nels.

An in-depth knowledge of velocity distribution plays a key role
in determining other transport properties of microchannels such as
heat and mass transfer coefficients. However, the authors were not
able to find any general solutions for fully developed flow in
ducts. As such, having a generalized solution for the velocity dis-
tribution in microchannels is a great value and can help to develop
generalized models for prediction of heat and mass transfer rates
in mini-/microchannels; this is the subject of the present work.

Regular polygon and hyperellipse are flexible geometries that
can cover a wide range of simply connected shapes, such as
square, triangle, hexagon, rectangle, ellipse, rhombus, and star
shaped. Therefore, the solution of flow through polygonal and
hyperelliptical channels will be valid for a wide range of common
geometries, thus can be considered as a general solution.

In this study, an analytical solution is developed to predict the
velocity distribution and the pressure drop of fully developed
laminar flow in both hyperelliptical and polygonal mini-/
microchannels. The proposed solution is validated through com-
parison with existing theoretical models and experimental data
collected from different sources for a variety of geometries, in-
cluding circular, rectangular, elliptical, triangular, and rhombic

cross sections.
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Considered Geometries

2.1 Hyperellipse. In the first quadrant, a hyperellipse is de-
cribed by

r0 =
a

��cos ��n + �sin �/��n�1/n , 0 � � =
b

a
� 1 �1�

here � is the aspect ratio, and a and b are the major and minor
xes of the cross section, respectively. As shown in Figs. 1 and 2,
y varying parameter n, one can create several geometries. For
�1, the resulting geometry is a cross section with convex sides,

.e., star-shaped geometry. Equation �1� with n=1 results in a
hombus and when n=2 yields an ellipse; for a=b, the consequent
eometry is a circle. For n�2, a rectangle with round corners is
reated and when n→� the resulting geometry becomes a rect-
ngle; in the special case of a=b, it represents a square and for
�b it yields parallel plates. Due to manufacturing processes,
ome of the flow passages have round corners. The hyperellipse
eometry also covers these cross sections. The cross-sectional
rea of a hyperellipse can be calculated from �33�

A = 4a2�

��	�n + 1

n
�

41/n	�n + 2

2n
� �2�

here 	� . � is the gamma function. The perimeter of the hyperel-
ipse does not have a closed form solution and must be calculated
rom the following integral:

ig. 1 Effect of n on the shape of the hyperellipse equation in
he first quadrant, ε=0.5

ig. 2 Different geometries covered by hyperellipse geometry,

=1
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	c = 4�
0

�/2��dr0

d�
�2

+ r0
2d� �3�

2.2 Regular polygon. As shown in Fig. 3, the m-sided regular
polygon ducts covers a wide range of geometries. For m=3, the
consequent geometry is an equilateral triangle; when m=4 and 6,
the shapes become a square and a hexagon, respectively. A circle
is a polygon with infinite number of sides, i.e., m→�. The cross-
sectional area of the polygonal channels is

A =
ms2

tan
�

m

�4�

and its perimeter is calculated as

	c = 2ms �5�
As shown in Fig. 3, all of the hatched regions surrounded by
symmetry lines are triangles with different vertex angles.

3 Problem Formulation
Fully developed, laminar, constant properties, and incompress-

ible flow in microchannels with constant hyperelliptical and po-
lygonal cross sections is considered. The compressibility effects

Fig. 4 Hyperelliptical cross-section and the boundary
conditions

Fig. 5 Considered geometry for modeling regular polygonal

Fig. 3 Regular polygons with different number of sides, m
cross section
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an be neglected for the Mach numbers lower than 0.3 �34�; thus,
he present analysis is acceptable for all Newtonian liquids and
as flows with Ma�0.3. Using the abovementioned assumptions,
he momentum equation reduces to Poisson’s equation �34�:

Table 1 Coefficients for velocity distr

n
�=0.2 �=0.25 �=0.4

A1 0.020 0.031 0.077
C1 0.250 0.248 0.225
C2 �0.004 �0.010 �0.033
C3 �0.002 �0.002 �0.012
C4 �0.007 �0.018 �0.010
C5 �0.006 0.001 0.004

n=4, recta
�=0.2 �=0.25 �=0.4

A1 0.020 0.031 0.076
C1 0.248 0.244 0.217
C2 �0.016 �0.021 �0.037
C3 0.013 0.009 0.003
C4 �0.014 �0.012 �0.007

�=0.2 �=0.25 �=0.4

A1 0.019 0.029 0.069
C1 0.231 0.221 0.181

A1 =
0.508�1.9

1.302 + �1

n
�=0.2 �=0.25 �=0.4

A1 0.015 0.022 0.046
C1 0.167 0.149 0.106
C2 0.356 0.344 0.242
C3 �1.130 �0.996 �0.453
C4 2.026 1.771 0.766
C5 �1.792 �1.588 �0.728
C6 0.607 0.548 0.270

�
n=0.9 n=0.8 n=0.7

A1 0.128 0.107 0.085
C1 0.000 0.000 0.000
C2 0.116 0.152 0.207
C3 0.000 0.000 0.000
C4 0.006 �0.008 �0.042
C5 0.000 0.000 0.000
C6 0.000 0.000 0.000

Table 2 Coefficients for velocity distrib

m=3 m=4 m=5 m=

A1 0.333 0.296 0.278 0.
C1 �0.083 �0.046 �0.03 �0.

u� = 	1 −
�2

4A1
+ 


i=1

� Ci

A1
��mi cos m���, A1 =
ournal of Fluids Engineering

ded 21 Mar 2011 to 142.58.186.224. Redistribution subject to ASM
dP

dz
= 
� �2u

�r2 +
1

r

�u

�r
+

1

r2

�2u

��2� �6�

where 
 is the fluid viscosity. Using the geometrical symmetry,

tion, Eq. „10… for hyperelliptical ducts

, rectangle
�=0.5 �=0.6 �=0.8 �=1

0.114 0.153 0.229 0.295
0.195 0.158 0.076 0.000
0.045 �0.052 �0.053 �0.045
0.013 �0.010 �0.004 0.000
0.004 0.000 0.002 0.001
0.003 0.001 0.000 0.000

with round corners
�=0.5 �=0.6 �=0.8 �=1

0.112 0.149 0.223 0.287
0.186 0.149 0.071 0.000
0.043 �0.045 �0.042 �0.035
0.001 0.001 0.000 0.000
0.005 �0.004 �0.002 �0.001

2, ellipse
�=0.5 �=0.6 �=0.8 �=1

0.100 0.132 0.195 0.250
0.150 0.118 0.055 0.000

C1 = 0.25 − A1

, rhombus
�=0.5 �=0.6 �=0.8 �=1

0.064 0.082 0.116 0.147
0.083 0.062 0.028 0.000
0.189 0.154 0.114 0.091
0.228 �0.110 �0.026 0.000
0.357 0.152 0.029 0.010
0.354 �0.155 �0.011 0.000
0.139 0.066 0.000 0.000

star-shape
n=0.6

0.062
0.000
0.303
0.000
0.176
0.000
0.061

on, Eq. „13… for regular polygonal ducts

m=7 m=8 m=12 m→�

0.265 0.261 0.255 0.250
�0.015 �0.012 �0.006 0.000

47 +
0.767

m2 , C1 =
1

6.01 − 3.12m − 0.965m2
ibu

=20

�
�
�

ngle

�

�

n=

9

.99 ,

=1

�

�

=1,

�

uti

6

270
021

0.2
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nly a portion of the cross section is considered in the analysis, as
hown in Figs. 4 and 5. Applicable boundary conditions for hy-
erelliptical channels are

� �u

��
�

�=�/2
= 0, � �u

��
�

�=0

= 0, u�r0� = 0 �7�

he first two equations are obtained from the existing symmetry
n the hyperellipse geometry. Moreover, the velocity should be
ounded. The general solution of Poisson’s equation, Eq. �6�, in
he cylindrical coordinate is �35�

u = A0 + B ln r −
r2

4

�dP

dz
� + 


k=1

�

�Ckr
k + Dkr

−k��Ek cos k�

+ Fk sin k�� �8�

he unknown coefficients A0, B, Ck, Dk, Ek, and Fk should be
alculated by applying the boundary conditions, Eq. �7�. At r=0,
he velocity must have a finite value; thus, B=Dk=0. Since dP /dz
emains constant for fully developed flows, Eq. �5� can be simpli-
ed as

u =
1



�dP

dz
�	A1 −

r2

4
+ 


k=1

�

�rk��Ek cos k� + Fk sin k��� �9�

here A1, Ek, and Fk are redefined. The symmetry conditions at
=0 and �=� /2 result in Fk=0 and k=2,4 ,6 , . . ., respectively.
fter nondimensionalizing, Eq. �9� reduces to

u� = 	1 −

2

4A1
+ 


i=1

�
Ci

A1
�
2i cos 2i���

�10�

u� =
u

Umax
=

u

1



�−

dP

dz
�A1a2

, 
 =
r

a

he last boundary condition, i.e., the no-slip condition, u���0�
0, on the channel wall should be used to calculate the rest of
nknown coefficients in Eq. �10�. Substituting for �0 from Eq. �1�,

ig. 6 Contours of constant velocity for elliptical channel with
=0.5, „a… present model, Eq. „10…; „b… model of Richardson et
l. †23‡
ne can write

11201-4 / Vol. 132, NOVEMBER 2010
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A1 −
1

4

1

��cos ��n + �sin �/��n�2/n

+ 

i=1

�

Ci� cos 2i�

��cos ��n + �sin �/��n�2i/n� = 0 �11�

Fig. 7 Contours of constant velocity for squared channel, „a…
present model, Eq. „10…; „b… Truskey et al. †19‡; „c… the relative
percentage difference between the present model and the
model of Truskey et al. †19‡
This equation is a function of �. To evaluate the coefficients,
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ollowing Ref. �36�, we truncate the series from the qth term and
pply Eq. �11� over q+1 different �s and solve the resulting set of
inear equations.

The same approach can be followed for polygonal ducts, shown
n Fig. 5. The difference between the two geometries is the loca-
ion of the symmetry lines. Applicable symmetry boundary con-
itions for polygonal cross section are

� �u

��
�

�=�/m
= 0, � �u

��
�

�=0

= 0 �12�

here m is the number of sides. Using Eq. �12�, the dimensionless
elocity distribution becomes

u� = 	1 −
�2

4A1
+ 


i=1

�
Ci

A1
��mi cos m���

�13�

u� =
u

Umax
=

u�tan
�

m
�2

1



�−

dP

dz
�A1s2

, � =

r tan
�

m

s

pplying no-slip boundary condition, the unknown coefficients in
qs. �10� and �13� can be determined. The calculated coefficients

or several hyperelliptical and polygonal ducts are listed in Tables
and 2, respectively.
A point matching technique �36� is used to apply the no-slip

oundary condition to a finite number of points over the channel’s
all in order to determine the coefficients in the velocity distribu-

ion, Eqs. �10� and �13�. The series solution is then truncated to
he same number of terms and the coefficients are reported in
ables 1 and 2. The number of terms in the recommended trun-
ated solutions is determined such that a maximum relative dif-
erence of 5% with the full solution is achieved. It should be noted
hat the proposed velocity distributions are in the cylindrical co-

ig. 8 Contours of constant velocity for rectangular channel
ith ε=0.25, „a… present model, Eq. „10…; „b… Truskey et al. †19‡;

c… the relative percentage difference between the present
odel and the model of Truskey et al. †19‡
rdinate, for cross sections that significantly deviate from the “el-

ournal of Fluids Engineering

ded 21 Mar 2011 to 142.58.186.224. Redistribution subject to ASM
liptical shape,” e.g., channels with sharp corners, more terms are
included in the solution. The no-slip condition points are distrib-
uted over the entire channel’s wall; however, more points are cho-
sen near the corners to ensure a continuous no-slip condition.

To verify the present approach, in Figs. 6–8 the predicted non-
dimensional velocity distributions for elliptical and rectangular
cross sections are compared with the analytical solutions of Rich-
ardson �23� and Truskey et al. �19�, respectively. The hyperellipse
equation, Eq. �1�, for n→� yields a rectangle; however, n=20 is
large enough to produce comparable results, see Fig. 1. Figures
6–8 show that the predicted contours of constant nondimensional
velocities are in full agreement with the analytical results for both
elliptical and rectangular cross sections. The solution for a po-
lygonal duct with three sides, i.e., equilateral triangular, is suc-
cessfully compared with the solution of Dryden et al. �17� in Fig.
9. The maximum velocities in the channel are also compared with
the analytical results for the considered geometries in Table 3.
Tabulated results justify the accuracy of the developed solution.

The solution for channels of star shaped and rectangular with

Fig. 9 Contours of constant velocity for a sector of triangular
channel, „a… present model, Eq. „13…; „b… the model of Dryden
et al. †17‡
round corners cross sections cannot be found elsewhere. The

NOVEMBER 2010, Vol. 132 / 111201-5
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ormer one has application in analyzing foams and packed beds,
hile the latter one is frequently formed during microfabrication
rocess of rectangular microchannels. The velocity contours and
istributions are plotted for ducts with star shaped and square with
ound corners cross sections in Fig. 10 and 11, respectively.

Pressure Drop and Poiseuille Number
Pressure drop is an important characteristic of any system that

hould be considered in the design procedure. Once the coeffi-
ients are known, one can integrate Eqs. �10� and �13� to find the
ressure drop for a specific volumetric flow rate, Q, for hyperel-
iptical and polygonal ducts, respectively:

ig. 10 Velocity contours and velocity distribution in a star-
haped channel with n=0.8 and ε=1, using Eq. „10…

Table 3 Comparison between the calculated
channels with other analytical solutions

Elliptical
cross-section �23�

n=2
�present solu

�=1 0.2500 0.2500
�=0.5 0.1000 0.1000
�=0.33 0.0500 0.0500
�=0.25 0.0294 0.0294
�=0.2 0.0192 0.0192
11201-6 / Vol. 132, NOVEMBER 2010

ded 21 Mar 2011 to 142.58.186.224. Redistribution subject to ASM
�−
dP

dz
�

hyperellipse
=


Q

a2 
� � 	A1 −

2

4

+ 

i=1

�

Ci�
2i cos 2i���dA�−1

�14�

Fig. 11 Velocity contours and velocity distribution in a square
with round corners duct, n=4, using Eq. „10…

ximum velocities in elliptical and rectangular

�
Rectangular

cross-section �19�
n=20

�present solution�

0.2947 0.2946
0.1139 0.1138
0.0545 0.0545
0.0311 0.0311
0.0200 0.0200
ma

tion
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�−
dP

dz
�

polygon
=


Q�tan
�

m
�2

s2 
� � 	A1 −
�2

4

+ 

i=1

�

Ci��mi cos mi���dA�−1

�15�

t can be seen that the pressure drop is a function of the volumet-
ic flow rate and dimensions of the cross section. Poiseuille num-
er, f Re, is the common dimensionless number used for analyz-
ng pressure drop in channels. The value of f Re depends on the
haracteristic length scale used for defining the Reynolds number.
t should be noted that selection of the characteristic length does
ot affect the calculated pressure drop. However, a more appro-
riate length scale leads to more consistent results, especially
hen various cross sections are considered. A circular duct is fully
escribed with its diameter; thus the obvious length scale is the
iameter �or radius�. For noncircular cross sections, the selection
s not as clear; many textbooks and researchers have convention-
lly chosen the hydraulic diameter �34�. Figures 12�a� and 12�b�
how the comparison of the analytical solutions of f Re, for el-
iptical, rectangular, and rhombus cross sections based on the hy-
raulic diameter and the square root of area, respectively. It can be

ig. 12 f Re for different geometries using „a… hydraulic diam-
ter and „b… square root of cross-sectional area as characteris-
ic length scales
bserved that using the square root of area as the characteristic

ournal of Fluids Engineering
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length leads to similar trends in analytical solutions of f Re for
the considered geometries. The values of f Re�A can be deter-
mined from the following equation:

f Re�A =
2A5/2


Q	c
�−

dP

dz
� �16�

where 	c is the cross-section perimeter and dp /dz is calculated
from Eqs. �14� and �15�. Values of f Re�A obtained from the
present model and the correlations proposed by Shah and London
�29� are plotted in Fig. 13 versus the cross-sectional aspect ratio
for rectangular, elliptical, and rhombic ducts. The results have an
excellent agreement. The rectangular microchannels have the
highest f Re�A in comparison to other considered geometries with
the same cross-sectional area. In addition, it can be seen that the
Poiseuille number has a reverse relationship with aspect ratio.

In Fig. 14, f Re�A values for polygonal channels calculated
using the present solution are compared with the results of Shah

Fig. 13 Values of f Re�A obtained from present model, Eq.
„16…, and existing correlations †29‡ for different values of n,
hyperelliptical ducts

Fig. 14 Values of f Re�A obtained from present model, Eq.
„17…, and tabulated values reported by †29‡ for different values
of m, regular polygonal ducts
NOVEMBER 2010, Vol. 132 / 111201-7
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nd London �29� and the results are in complete agreement. More
mportantly, the minimum value of f Re�A occurs for m=6; this
eans that hexagonal ducts have the minimum pressure drop in

omparison with other polygonal shapes. It can be seen that the
f Re�A for regular polygonal channels can be calculated with less
han 1% inaccuracy using the following equation:

f Re�A = 14.18 + 0.5m−1 − 26.4m−2 + 102.18m−3 �17�

o determine the Poiseuille number, f Re, Bahrami et al. �30,31�
tarted from the analytical solution of elliptical channel. They also
elected �A as the length scale in their study. The final result was
resented in an easy-to-use form, as a function of cross-sectional
rea and polar moment of inertia. In Table 4 the nondimensional
alues of the pressure drop for elliptical ducts are compared with
he analytical model of Richardson �23� and the model of Bahrami
t al. �31�. All solutions capture the same results for elliptical
hannels. The values of the pressure drop obtained from the
resent solution for rectangular cross section and the approximate
odel of Bahrami et al. �31� are listed in Table 5. It can be seen

hat the difference between the proposed model and the model of
ahrami et al. �31� is less than 8%. Therefore, the model of Bahr-
mi et al. �31� is an accurate alternative approach for prediction of
pproximate values of pressure drop.

4.1 Comparison With Experimental Data. Several re-
earchers have reported experimental data for pressure drop in
ectangular microchannels. Stanly �12� studied flow of water, ni-
rogen, and helium in arrays of rectangular microchannels. The
hannels were fabricated by machining aluminum substrates and
hen covering them with glass plates. Papautsky et al. �37� fabri-
ated arrays of pipettes with width varying from 150 
m to
00 
m. Their data for low aspect ratios consistently were 20%
arger than theoretical values. Therefore, only their results for as-
ect ratios larger than 0.05 are included here.

Liu and Garimella �38� carried out experiments and measured
he friction factor in rectangular microchannels. They did not ob-
erve any scale-related phenomena in their experiments and con-
luded that the conventional theory can be used to predict the flow
ehavior in microchannels in the range of dimensions considered.

Wu and Cheng �39� conducted experiments and measured the
riction factor of laminar flow of de-ionized water in smooth sili-
on microchannels of trapezoidal, rectangular, and triangular cross
ections.

Jung and Kwak �40� experimentally measured fluid flow and
eat transfer in rectangular silicon microchannels with different
spect ratios. But, they only reported the friction factor for two

able 4 f Re�A for elliptical ducts obtained from different
odels

� f Re�A �23� f Re�A �present solution� f Re�A �31�

1 14.18 14.18 14.18
0.5 16.26 16.26 16.26
0.33 19.20 19.20 19.20
0.25 22.07 22.07 22.07
0.2 24.65 24.65 24.65

able 5 f Re�A for rectangular ducts obtained from different
odels

� f Re�A �present solution� f Re�A �31�

1 14.17 13.16
0.5 16.50 15.51
0.33 19.74 18.99
0.25 22.79 22.37
0.2 25.60 25.50
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geometries, �=0.5 and 1.
Recently, Akbari et al. �41� performed experiments to measure

pressure drop in rectangular microchannels, fabricated in poly-
dimethylsiloxane �PDMS�. The fabricated channels were cut in
different locations to make sure that they have a rectangular cross
section. They tested several samples with a wide range of cross-
sectional aspect ratios.

In Fig. 15, the values of Poiseuille number are plotted against
experimental data collected from the above-mentioned sources. It
can be seen that the present solution captures the trends of experi-
mental data of liquid flow in rectangular ducts fabricated using
different materials over a wide range of aspect ratios. Moreover, it
can be seen that the model of Bahrami et al. �31� provides good
approximations for Poiseuille number.

5 Conclusions
Analytical solutions were proposed for the laminar, fully devel-

oped flow through hyperelliptical and polygonal mini-/
microchannels. The present method enables one to predict veloc-
ity distribution and pressure drop for several common fabricated
geometries for industrial applications including circular, elliptical,
rectangular, rhombus, triangular, and hexagonal ducts. The ap-
proach was based on using general solution Poisson’s equation in
the form of trigonometric series expansion. Therefore, the re-
quired coefficients were reported for a wide range of geometries.
Using the developed solution for velocity distribution, pressure
drops and Poiseuille numbers were determined for a variety of
cross sections. The predicted values were verified through com-
parison with analytical solutions for elliptical, circular, rectangu-
lar, rhombic, and polygonal ducts. Predicted results were also suc-
cessfully compared with experimental data collected by others for
rectangular channels.
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Nomenclature
a � hyperellipse major axis, m
A � cross-sectional area, m2

Fig. 15 Comparison of the f Re�A values for rectangular chan-
nels predicted using Eq. „16… with experimental data collected
from various sources
b � hyperellipse minor axis, m

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G

S

R

J

Downloa
Dh � hydraulic diameter, 4A /	c, m
f � Fanning friction factor

f Re � Poiseuille number
Ip � Polar moment of inertia about the centroid, m4

m � number of sides in regular polygonal ducts
n � exponent in hyperellipse formula
P � pressure, N /m2

Q � volumetric flow rate, m3 /s
Re � Reynolds number

s � half the length of the sides in polygonal ducts,
m

u � axial velocity, m/s
u� � nondimensional velocity, Eq. �7�

reek symbols
	� . � � gamma function

	c � perimeter, m
� � cross-sectional aspect ratio, �=b /a
� � nondimensional coordinate, �=r�tan � /m� /s

 � viscosity, N s /m2

� � coordinate system
�m � half of the vertex angle in polygon with m

sides

 � nondimensional coordinate, 
=r /a

ubscript
�A � Square root of cross-sectional area, m
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